We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{-p^2} & \color{blue}{4p} & \color{blue}{-1} \\ \hline \color{blue}{2p} & & & \\ \hline \color{blue}{-1} & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{-p^2} & \color{blue}{4p} & \color{blue}{-1} \\ \hline \color{blue}{2p} & \color{orangered}{-2p^3} & \color{orangered}{8p^2} & \color{orangered}{-2p} \\ \hline \color{blue}{-1} & \color{orangered}{p^2} & \color{orangered}{-4p} & \color{orangered}{1} \\ \hline \end{darray} $$Combine like terms:
$$ -2p^3 + 8p^2 + p^2-2p-4p + 1 = \\ -2p^3+9p^2-6p+1 $$