Step 1: First we have to write polynomials in descending order.
$$ \begin{aligned} P(x) &= 16i^2-16i+16 \\ Q(x) &= 16i^2-16i+16 \\ \end{aligned} $$We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{16i^2} & \color{blue}{-16i} & \color{blue}{16} \\ \hline \color{blue}{16i^2} & & & \\ \hline \color{blue}{-16i} & & & \\ \hline \color{blue}{16} & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{16i^2} & \color{blue}{-16i} & \color{blue}{16} \\ \hline \color{blue}{16i^2} & \color{orangered}{256i^4} & \color{orangered}{-256i^3} & \color{orangered}{256i^2} \\ \hline \color{blue}{-16i} & \color{orangered}{-256i^3} & \color{orangered}{256i^2} & \color{orangered}{-256i} \\ \hline \color{blue}{16} & \color{orangered}{256i^2} & \color{orangered}{-256i} & \color{orangered}{256} \\ \hline \end{darray} $$Combine like terms:
$$ 256i^4-256i^3-256i^3 + 256i^2 + 256i^2 + 256i^2-256i-256i + 256 = \\ 256i^4-512i^3+768i^2-512i+256 $$