We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{-3n^2} & \color{blue}{n} & \color{blue}{-1} \\ \hline \color{blue}{3n} & & & \\ \hline \color{blue}{4} & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|}\hline & \color{blue}{-3n^2} & \color{blue}{n} & \color{blue}{-1} \\ \hline \color{blue}{3n} & \color{orangered}{-9n^3} & \color{orangered}{3n^2} & \color{orangered}{-3n} \\ \hline \color{blue}{4} & \color{orangered}{-12n^2} & \color{orangered}{4n} & \color{orangered}{-4} \\ \hline \end{darray} $$Combine like terms:
$$ -9n^3 + 3n^2-12n^2-3n + 4n-4 = \\ -9n^3-9n^2+n-4 $$