We can multiply polynomials by using a GRID METHOD
Write one of the polynomials across the top and the other down the left side.
$$ \begin{darray}{|c|c|c|c|c|}\hline & \color{blue}{-2g^3} & \color{blue}{11g^2} & \color{blue}{-10g} & \color{blue}{-14} \\ \hline \color{blue}{g} & & & & \\ \hline \color{blue}{-2} & & & & \\ \hline \end{darray} $$Fill in each empty box by multiplying the intersecting terms.
$$ \begin{darray}{|c|c|c|c|c|}\hline & \color{blue}{-2g^3} & \color{blue}{11g^2} & \color{blue}{-10g} & \color{blue}{-14} \\ \hline \color{blue}{g} & \color{orangered}{-2g^4} & \color{orangered}{11g^3} & \color{orangered}{-10g^2} & \color{orangered}{-14g} \\ \hline \color{blue}{-2} & \color{orangered}{4g^3} & \color{orangered}{-22g^2} & \color{orangered}{20g} & \color{orangered}{28} \\ \hline \end{darray} $$Combine like terms:
$$ -2g^4 + 11g^3 + 4g^3-10g^2-22g^2-14g + 20g + 28 = \\ -2g^4+15g^3-32g^2+6g+28 $$