In this example we are multiplying two binomials so FOIL method can be used.
$$ \begin{aligned} \left( \color{blue}{ -b+3}\right) \cdot \left( \color{orangered}{ -2b+5}\right) &= \underbrace{ \left( \color{blue}{-b} \right) \cdot \left( \color{orangered}{-2b} \right) }_{\text{FIRST}} + \underbrace{ \left( \color{blue}{-b} \right) \cdot \color{orangered}{5} }_{\text{OUTER}} + \underbrace{ \color{blue}{3} \cdot \left( \color{orangered}{-2b} \right) }_{\text{INNER}} + \underbrace{ \color{blue}{3} \cdot \color{orangered}{5} }_{\text{LAST}} = \\ &= 2b^2 + \left( -5b\right) + \left( -6b\right) + 15 = \\ &= 2b^2 + \left( -5b\right) + \left( -6b\right) + 15 = \\ &= 2b^2-11b+15; \end{aligned} $$