Tap the blue circles to see an explanation.
$$ \begin{aligned}y^2(-4y+5)-6y^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-4y^3+5y^2-6y^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4y^3-y^2\end{aligned} $$ | |
① | Multiply $ \color{blue}{y^2} $ by $ \left( -4y+5\right) $ $$ \color{blue}{y^2} \cdot \left( -4y+5\right) = -4y^3+5y^2 $$ |
② | Combine like terms: $$ -4y^3+ \color{blue}{5y^2} \color{blue}{-6y^2} = -4y^3 \color{blue}{-y^2} $$ |