Tap the blue circles to see an explanation.
$$ \begin{aligned}x+2+(x+2)(x+1)+(x+2)\frac{(x+1)^2}{2}+(x+2)\frac{(x+1)^3}{3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x+2+x^2+x+2x+2+(x+2)\frac{(x+1)^2}{2}+(x+2)\frac{(x+1)^3}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x+2+x^2+3x+2+(x+2)\frac{(x+1)^2}{2}+(x+2)\frac{(x+1)^3}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^2+4x+4+(x+2)\frac{(x+1)^2}{2}+(x+2)\frac{(x+1)^3}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}x^2+4x+4+(x+2)\frac{x^2+2x+1}{2}+(x+2)\frac{x^3+3x^2+3x+1}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}x^2+4x+4+\frac{x^3+4x^2+5x+2}{2}+\frac{x^4+5x^3+9x^2+7x+2}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{x^3+6x^2+13x+10}{2}+\frac{x^4+5x^3+9x^2+7x+2}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{2x^4+13x^3+36x^2+53x+34}{6}\end{aligned} $$ | |
① | Multiply each term of $ \left( \color{blue}{x+2}\right) $ by each term in $ \left( x+1\right) $. $$ \left( \color{blue}{x+2}\right) \cdot \left( x+1\right) = x^2+x+2x+2 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{x} + \color{blue}{2x} +2 = x^2+ \color{blue}{3x} +2 $$ |
③ | Combine like terms: $$ \color{blue}{x} + \color{red}{2} +x^2+ \color{blue}{3x} + \color{red}{2} = x^2+ \color{blue}{4x} + \color{red}{4} $$ |
④ | Find $ \left(x+1\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(x+1\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 1 + \color{red}{1^2} = x^2+2x+1\end{aligned} $$ |
⑤ | Find $ \left(x+1\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = x $ and $ B = 1 $. $$ \left(x+1\right)^3 = x^3+3 \cdot x^2 \cdot 1 + 3 \cdot x \cdot 1^2+1^3 = x^3+3x^2+3x+1 $$ |
⑥ | Step 1: Write $ x+2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x+2 \cdot \frac{x^2+2x+1}{2} & \xlongequal{\text{Step 1}} \frac{x+2}{\color{red}{1}} \cdot \frac{x^2+2x+1}{2} \xlongequal{\text{Step 2}} \frac{ \left( x+2 \right) \cdot \left( x^2+2x+1 \right) }{ 1 \cdot 2 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^3+2x^2+x+2x^2+4x+2 }{ 2 } = \frac{x^3+4x^2+5x+2}{2} \end{aligned} $$ |
⑦ | Step 1: Write $ x+2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x+2 \cdot \frac{x^3+3x^2+3x+1}{3} & \xlongequal{\text{Step 1}} \frac{x+2}{\color{red}{1}} \cdot \frac{x^3+3x^2+3x+1}{3} \xlongequal{\text{Step 2}} \frac{ \left( x+2 \right) \cdot \left( x^3+3x^2+3x+1 \right) }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^4+3x^3+3x^2+x+2x^3+6x^2+6x+2 }{ 3 } = \frac{x^4+5x^3+9x^2+7x+2}{3} \end{aligned} $$ |
⑧ | Step 1: Write $ x^2+4x+4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑨ | Step 1: Write $ x+2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} x+2 \cdot \frac{x^3+3x^2+3x+1}{3} & \xlongequal{\text{Step 1}} \frac{x+2}{\color{red}{1}} \cdot \frac{x^3+3x^2+3x+1}{3} \xlongequal{\text{Step 2}} \frac{ \left( x+2 \right) \cdot \left( x^3+3x^2+3x+1 \right) }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^4+3x^3+3x^2+x+2x^3+6x^2+6x+2 }{ 3 } = \frac{x^4+5x^3+9x^2+7x+2}{3} \end{aligned} $$ |
⑩ | To add raitonal expressions, both fractions must have the same denominator. |