Tap the blue circles to see an explanation.
$$ \begin{aligned}x-2-12x+\frac{20}{x}-2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-11x-2+\frac{20}{x}-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-11x^2-2x+20}{x}-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-11x^2-4x+20}{x}\end{aligned} $$ | |
① | Combine like terms: $$ \color{blue}{x} -2 \color{blue}{-12x} = \color{blue}{-11x} -2 $$ |
② | Step 1: Write $ -11x-2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |