Tap the blue circles to see an explanation.
$$ \begin{aligned}x(2x+7)+x\cdot(9+5x^3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}2x^2+7x+9x+5x^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^4+2x^2+16x\end{aligned} $$ | |
① | Multiply $ \color{blue}{x} $ by $ \left( 2x+7\right) $ $$ \color{blue}{x} \cdot \left( 2x+7\right) = 2x^2+7x $$Multiply $ \color{blue}{x} $ by $ \left( 9+5x^3\right) $ $$ \color{blue}{x} \cdot \left( 9+5x^3\right) = 9x+5x^4 $$ |
② | Combine like terms: $$ 2x^2+ \color{blue}{7x} + \color{blue}{9x} +5x^4 = 5x^4+2x^2+ \color{blue}{16x} $$ |