Tap the blue circles to see an explanation.
$$ \begin{aligned}x^4-2(x^2+x)+3x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^4-(2x^2+2x)+3x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^4-2x^2-2x+3x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^4-2x^2+x\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( x^2+x\right) $ $$ \color{blue}{2} \cdot \left( x^2+x\right) = 2x^2+2x $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2x^2+2x \right) = -2x^2-2x $$ |
③ | Combine like terms: $$ x^4-2x^2 \color{blue}{-2x} + \color{blue}{3x} = x^4-2x^2+ \color{blue}{x} $$ |