Tap the blue circles to see an explanation.
$$ \begin{aligned}x^4+x^2(5x-6)+(5x-6)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^4+x^2(5x-6)+25x^2-60x+36 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^4+5x^3-6x^2+25x^2-60x+36\end{aligned} $$ | |
① | Find $ \left(5x-6\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 5x } $ and $ B = \color{red}{ 6 }$. $$ \begin{aligned}\left(5x-6\right)^2 = \color{blue}{\left( 5x \right)^2} -2 \cdot 5x \cdot 6 + \color{red}{6^2} = 25x^2-60x+36\end{aligned} $$ |
② | Combine like terms: $$ x^4+5x^3-6x^2 = x^4+5x^3-6x^2 $$ |