Tap the blue circles to see an explanation.
$$ \begin{aligned}x^2\cdot(4-x)+\frac{(4-x)^3}{3}+4-x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2-x^3+\frac{(4-x)^3}{3}+4-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-x^3+\frac{64-48x+12x^2-x^3}{3}+4-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-4x^3+24x^2-48x+64}{3}+4-x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-4x^3+24x^2-51x+76}{3}\end{aligned} $$ | |
① | Multiply $ \color{blue}{x^2} $ by $ \left( 4-x\right) $ $$ \color{blue}{x^2} \cdot \left( 4-x\right) = 4x^2-x^3 $$ |
② | Find $ \left(4-x\right)^3 $ using formula $$ (A - B) = A^3 - 3A^2B + 3AB^2 - B^3 $$where $ A = 4 $ and $ B = x $. $$ \left(4-x\right)^3 = 4^3-3 \cdot 4^2 \cdot x + 3 \cdot 4 \cdot x^2-x^3 = 64-48x+12x^2-x^3 $$ |
③ | Step 1: Write $ 4x^2-x^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ 4-x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |