Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x}{x}-2+\frac{3}{x}-2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{x}{x}+\frac{3}{x}-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-x+3}{x}-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-3x+3}{x}\end{aligned} $$ | |
① | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{-x}{x} + \frac{3}{x} & = \frac{-x}{\color{blue}{x}} + \frac{3}{\color{blue}{x}} =\frac{ -x + 3 }{ \color{blue}{ x }} \end{aligned} $$ |
③ | Step 1: Write $ 2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |