Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x}{3}-\frac{y}{5}-3x+3y& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5x-3y}{15}-3x+3y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-40x-3y}{15}+3y \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-40x+42y}{15}\end{aligned} $$ | |
① | To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ 3x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 3y $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |