Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{9+\frac{x^2}{11+\frac{x^2}{13+\frac{x^2}{15}}}}}}}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{9+\frac{x^2}{11+\frac{x^2}{\frac{x^2+195}{15}}}}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{9+\frac{x^2}{11+\frac{15x^2}{x^2+195}}}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{9+\frac{x^2}{\frac{26x^2+2145}{x^2+195}}}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{9+\frac{x^4+195x^2}{26x^2+2145}}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{x^2}{\frac{x^4+429x^2+19305}{26x^2+2145}}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{7+\frac{26x^4+2145x^2}{x^4+429x^2+19305}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^2}{\frac{33x^4+5148x^2+135135}{x^4+429x^2+19305}}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{5+\frac{x^6+429x^4+19305x^2}{33x^4+5148x^2+135135}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{x^2}{\frac{x^6+594x^4+45045x^2+675675}{33x^4+5148x^2+135135}}}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{x}{1+\frac{x^2}{3+\frac{33x^6+5148x^4+135135x^2}{x^6+594x^4+45045x^2+675675}}} \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle11}{\textcircled {11}} } }}}\frac{x}{1+\frac{x^2}{\frac{36x^6+6930x^4+270270x^2+2027025}{x^6+594x^4+45045x^2+675675}}} \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle12}{\textcircled {12}} } }}}\frac{x}{1+\frac{x^8+594x^6+45045x^4+675675x^2}{36x^6+6930x^4+270270x^2+2027025}} \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle13}{\textcircled {13}} } }}}\frac{x}{\frac{x^8+630x^6+51975x^4+945945x^2+2027025}{36x^6+6930x^4+270270x^2+2027025}} \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle14}{\textcircled {14}} } }}}\frac{36x^7+6930x^5+270270x^3+2027025x}{x^8+630x^6+51975x^4+945945x^2+2027025}\end{aligned} $$ | |
① | Step 1: Write $ 13 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
② | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{x^2+195}}{\color{blue}{15}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{15}}{\color{blue}{x^2+195}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{15}{x^2+195} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot 15 }{ 1 \cdot \left( x^2+195 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 15x^2 }{ x^2+195 } \end{aligned} $$ |
③ | Step 1: Write $ 11 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{26x^2+2145}}{\color{blue}{x^2+195}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{x^2+195}}{\color{blue}{26x^2+2145}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{x^2+195}{26x^2+2145} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot \left( x^2+195 \right) }{ 1 \cdot \left( 26x^2+2145 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ x^4+195x^2 }{ 26x^2+2145 } \end{aligned} $$ |
⑤ | Step 1: Write $ 9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑥ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{x^4+429x^2+19305}}{\color{blue}{26x^2+2145}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{26x^2+2145}}{\color{blue}{x^4+429x^2+19305}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{26x^2+2145}{x^4+429x^2+19305} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot \left( 26x^2+2145 \right) }{ 1 \cdot \left( x^4+429x^2+19305 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 26x^4+2145x^2 }{ x^4+429x^2+19305 } \end{aligned} $$ |
⑦ | Step 1: Write $ 7 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑧ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{33x^4+5148x^2+135135}}{\color{blue}{x^4+429x^2+19305}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{x^4+429x^2+19305}}{\color{blue}{33x^4+5148x^2+135135}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{x^4+429x^2+19305}{33x^4+5148x^2+135135} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot \left( x^4+429x^2+19305 \right) }{ 1 \cdot \left( 33x^4+5148x^2+135135 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ x^6+429x^4+19305x^2 }{ 33x^4+5148x^2+135135 } \end{aligned} $$ |
⑨ | Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑩ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{x^6+594x^4+45045x^2+675675}}{\color{blue}{33x^4+5148x^2+135135}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{33x^4+5148x^2+135135}}{\color{blue}{x^6+594x^4+45045x^2+675675}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{33x^4+5148x^2+135135}{x^6+594x^4+45045x^2+675675} \xlongequal{\text{Step 3}} \frac{ x^2 \cdot \left( 33x^4+5148x^2+135135 \right) }{ 1 \cdot \left( x^6+594x^4+45045x^2+675675 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 33x^6+5148x^4+135135x^2 }{ x^6+594x^4+45045x^2+675675 } \end{aligned} $$ |
⑪ | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑫ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x^2}{ \frac{\color{blue}{36x^6+6930x^4+270270x^2+2027025}}{\color{blue}{x^6+594x^4+45045x^2+675675}} } & \xlongequal{\text{Step 1}} x^2 \cdot \frac{\color{blue}{x^6+594x^4+45045x^2+675675}}{\color{blue}{36x^6+6930x^4+270270x^2+2027025}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x^2}{\color{red}{1}} \cdot \frac{x^6+594x^4+45045x^2+675675}{36x^6+6930x^4+270270x^2+2027025} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x^2 \cdot \left( x^6+594x^4+45045x^2+675675 \right) }{ 1 \cdot \left( 36x^6+6930x^4+270270x^2+2027025 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ x^8+594x^6+45045x^4+675675x^2 }{ 36x^6+6930x^4+270270x^2+2027025 } \end{aligned} $$ |
⑬ | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
⑭ | Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ x $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{x}{ \frac{\color{blue}{x^8+630x^6+51975x^4+945945x^2+2027025}}{\color{blue}{36x^6+6930x^4+270270x^2+2027025}} } & \xlongequal{\text{Step 1}} x \cdot \frac{\color{blue}{36x^6+6930x^4+270270x^2+2027025}}{\color{blue}{x^8+630x^6+51975x^4+945945x^2+2027025}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{x}{\color{red}{1}} \cdot \frac{36x^6+6930x^4+270270x^2+2027025}{x^8+630x^6+51975x^4+945945x^2+2027025} = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ x \cdot \left( 36x^6+6930x^4+270270x^2+2027025 \right) }{ 1 \cdot \left( x^8+630x^6+51975x^4+945945x^2+2027025 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 36x^7+6930x^5+270270x^3+2027025x }{ x^8+630x^6+51975x^4+945945x^2+2027025 } \end{aligned} $$ |