Tap the blue circles to see an explanation.
$$ \begin{aligned}x(x+7)(x+11)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+7x)(x+11) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^3+11x^2+7x^2+77x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x^3+18x^2+77x\end{aligned} $$ | |
① | Multiply $ \color{blue}{x} $ by $ \left( x+7\right) $ $$ \color{blue}{x} \cdot \left( x+7\right) = x^2+7x $$ |
② | Multiply each term of $ \left( \color{blue}{x^2+7x}\right) $ by each term in $ \left( x+11\right) $. $$ \left( \color{blue}{x^2+7x}\right) \cdot \left( x+11\right) = x^3+11x^2+7x^2+77x $$ |
③ | Combine like terms: $$ x^3+ \color{blue}{11x^2} + \color{blue}{7x^2} +77x = x^3+ \color{blue}{18x^2} +77x $$ |