Tap the blue circles to see an explanation.
$$ \begin{aligned}x(x+3)+2(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x^2+3x+2x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}x^2+5x+8\end{aligned} $$ | |
① | Multiply $ \color{blue}{x} $ by $ \left( x+3\right) $ $$ \color{blue}{x} \cdot \left( x+3\right) = x^2+3x $$Multiply $ \color{blue}{2} $ by $ \left( x+4\right) $ $$ \color{blue}{2} \cdot \left( x+4\right) = 2x+8 $$ |
② | Combine like terms: $$ x^2+ \color{blue}{3x} + \color{blue}{2x} +8 = x^2+ \color{blue}{5x} +8 $$ |