Tap the blue circles to see an explanation.
$$ \begin{aligned}x(x-1)(x-2)^2(x^2-7x+13)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}x(x-1)(x^2-4x+4)(x^2-7x+13) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(x^2-x)(x^2-4x+4)(x^2-7x+13) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}(x^4-4x^3+4x^2-x^3+4x^2-4x)(x^2-7x+13) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(x^4-5x^3+8x^2-4x)(x^2-7x+13) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}x^6-12x^5+56x^4-125x^3+132x^2-52x\end{aligned} $$ | |
① | Find $ \left(x-2\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x-2\right)^2 = \color{blue}{x^2} -2 \cdot x \cdot 2 + \color{red}{2^2} = x^2-4x+4\end{aligned} $$ |
② | Multiply $ \color{blue}{x} $ by $ \left( x-1\right) $ $$ \color{blue}{x} \cdot \left( x-1\right) = x^2-x $$ |
③ | Multiply each term of $ \left( \color{blue}{x^2-x}\right) $ by each term in $ \left( x^2-4x+4\right) $. $$ \left( \color{blue}{x^2-x}\right) \cdot \left( x^2-4x+4\right) = x^4-4x^3+4x^2-x^3+4x^2-4x $$ |
④ | Combine like terms: $$ x^4 \color{blue}{-4x^3} + \color{red}{4x^2} \color{blue}{-x^3} + \color{red}{4x^2} -4x = x^4 \color{blue}{-5x^3} + \color{red}{8x^2} -4x $$ |
⑤ | Multiply each term of $ \left( \color{blue}{x^4-5x^3+8x^2-4x}\right) $ by each term in $ \left( x^2-7x+13\right) $. $$ \left( \color{blue}{x^4-5x^3+8x^2-4x}\right) \cdot \left( x^2-7x+13\right) = \\ = x^6-7x^5+13x^4-5x^5+35x^4-65x^3+8x^4-56x^3+104x^2-4x^3+28x^2-52x $$ |
⑥ | Combine like terms: $$ x^6 \color{blue}{-7x^5} + \color{red}{13x^4} \color{blue}{-5x^5} + \color{green}{35x^4} \color{orange}{-65x^3} + \color{green}{8x^4} \color{blue}{-56x^3} + \color{red}{104x^2} \color{blue}{-4x^3} + \color{red}{28x^2} -52x = \\ = x^6 \color{blue}{-12x^5} + \color{green}{56x^4} \color{blue}{-125x^3} + \color{red}{132x^2} -52x $$ |