Tap the blue circles to see an explanation.
$$ \begin{aligned}x(4x-2)+(x-2)(x+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2-2x+x^2+2x-2x-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-2x+x^2-4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}5x^2-2x-4\end{aligned} $$ | |
① | Multiply $ \color{blue}{x} $ by $ \left( 4x-2\right) $ $$ \color{blue}{x} \cdot \left( 4x-2\right) = 4x^2-2x $$ Multiply each term of $ \left( \color{blue}{x-2}\right) $ by each term in $ \left( x+2\right) $. $$ \left( \color{blue}{x-2}\right) \cdot \left( x+2\right) = x^2+ \cancel{2x} -\cancel{2x}-4 $$ |
② | Combine like terms: $$ x^2+ \, \color{blue}{ \cancel{2x}} \, \, \color{blue}{ -\cancel{2x}} \,-4 = x^2-4 $$ |
③ | Combine like terms: $$ \color{blue}{4x^2} -2x+ \color{blue}{x^2} -4 = \color{blue}{5x^2} -2x-4 $$ |