Tap the blue circles to see an explanation.
$$ \begin{aligned}w^3(3w^2+2w)+5w^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3w^5+2w^4+5w^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}3w^5+7w^4\end{aligned} $$ | |
① | Multiply $ \color{blue}{w^3} $ by $ \left( 3w^2+2w\right) $ $$ \color{blue}{w^3} \cdot \left( 3w^2+2w\right) = 3w^5+2w^4 $$ |
② | Combine like terms: $$ 3w^5+ \color{blue}{2w^4} + \color{blue}{5w^4} = 3w^5+ \color{blue}{7w^4} $$ |