Tap the blue circles to see an explanation.
$$ \begin{aligned}u^4-u^2(3u^2-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}u^4-(3u^4-2u^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}u^4-3u^4+2u^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-2u^4+2u^2\end{aligned} $$ | |
① | Multiply $ \color{blue}{u^2} $ by $ \left( 3u^2-2\right) $ $$ \color{blue}{u^2} \cdot \left( 3u^2-2\right) = 3u^4-2u^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3u^4-2u^2 \right) = -3u^4+2u^2 $$ |
③ | Combine like terms: $$ \color{blue}{u^4} \color{blue}{-3u^4} +2u^2 = \color{blue}{-2u^4} +2u^2 $$ |