Tap the blue circles to see an explanation.
$$ \begin{aligned}sqrt\cdot(1-\frac{x^2}{9})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}sqrt\frac{-x^2+9}{9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-qrstx^2+9qrst}{9}\end{aligned} $$ | |
① | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
② | Step 1: Write $ qrst $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} qrst \cdot \frac{-x^2+9}{9} & \xlongequal{\text{Step 1}} \frac{qrst}{\color{red}{1}} \cdot \frac{-x^2+9}{9} \xlongequal{\text{Step 2}} \frac{ qrst \cdot \left( -x^2+9 \right) }{ 1 \cdot 9 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -qrstx^2+9qrst }{ 9 } \end{aligned} $$ |