Tap the blue circles to see an explanation.
$$ \begin{aligned}s-1+(s-1)^2(s+3)(s+10)(s+1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}s-1+(1s^2-2s+1)(s+3)(s+10)(s+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}s-1+(1s^3+3s^2-2s^2-6s+s+3)(s+10)(s+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}s-1+(1s^3+s^2-5s+3)(s+10)(s+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}s-1+(1s^4+11s^3+5s^2-47s+30)(s+1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}s-1+s^5+12s^4+16s^3-42s^2-17s+30 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}s^5+12s^4+16s^3-42s^2-16s+29\end{aligned} $$ | |
① | Find $ \left(s-1\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ s } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(s-1\right)^2 = \color{blue}{s^2} -2 \cdot s \cdot 1 + \color{red}{1^2} = s^2-2s+1\end{aligned} $$ |
② | Multiply each term of $ \left( \color{blue}{s^2-2s+1}\right) $ by each term in $ \left( s+3\right) $. $$ \left( \color{blue}{s^2-2s+1}\right) \cdot \left( s+3\right) = s^3+3s^2-2s^2-6s+s+3 $$ |
③ | Combine like terms: $$ s^3+ \color{blue}{3s^2} \color{blue}{-2s^2} \color{red}{-6s} + \color{red}{s} +3 = s^3+ \color{blue}{s^2} \color{red}{-5s} +3 $$ |
④ | Multiply each term of $ \left( \color{blue}{s^3+s^2-5s+3}\right) $ by each term in $ \left( s+10\right) $. $$ \left( \color{blue}{s^3+s^2-5s+3}\right) \cdot \left( s+10\right) = s^4+10s^3+s^3+10s^2-5s^2-50s+3s+30 $$ |
⑤ | Combine like terms: $$ s^4+ \color{blue}{10s^3} + \color{blue}{s^3} + \color{red}{10s^2} \color{red}{-5s^2} \color{green}{-50s} + \color{green}{3s} +30 = s^4+ \color{blue}{11s^3} + \color{red}{5s^2} \color{green}{-47s} +30 $$ |
⑥ | Multiply each term of $ \left( \color{blue}{s^4+11s^3+5s^2-47s+30}\right) $ by each term in $ \left( s+1\right) $. $$ \left( \color{blue}{s^4+11s^3+5s^2-47s+30}\right) \cdot \left( s+1\right) = s^5+s^4+11s^4+11s^3+5s^3+5s^2-47s^2-47s+30s+30 $$ |
⑦ | Combine like terms: $$ s^5+ \color{blue}{s^4} + \color{blue}{11s^4} + \color{red}{11s^3} + \color{red}{5s^3} + \color{green}{5s^2} \color{green}{-47s^2} \color{orange}{-47s} + \color{orange}{30s} +30 = \\ = s^5+ \color{blue}{12s^4} + \color{red}{16s^3} \color{green}{-42s^2} \color{orange}{-17s} +30 $$ |
⑧ | Combine like terms: $$ \color{blue}{s} \color{red}{-1} +s^5+12s^4+16s^3-42s^2 \color{blue}{-17s} + \color{red}{30} = s^5+12s^4+16s^3-42s^2 \color{blue}{-16s} + \color{red}{29} $$ |