Tap the blue circles to see an explanation.
$$ \begin{aligned}s(s+1)(s+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(1s^2+s)(s+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}s^3+2s^2+s^2+2s \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}s^3+3s^2+2s\end{aligned} $$ | |
① | Multiply $ \color{blue}{s} $ by $ \left( s+1\right) $ $$ \color{blue}{s} \cdot \left( s+1\right) = s^2+s $$ |
② | Multiply each term of $ \left( \color{blue}{s^2+s}\right) $ by each term in $ \left( s+2\right) $. $$ \left( \color{blue}{s^2+s}\right) \cdot \left( s+2\right) = s^3+2s^2+s^2+2s $$ |
③ | Combine like terms: $$ s^3+ \color{blue}{2s^2} + \color{blue}{s^2} +2s = s^3+ \color{blue}{3s^2} +2s $$ |