Tap the blue circles to see an explanation.
$$ \begin{aligned}s(s+2)(s+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(1s^2+2s)(s+4) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}s^3+4s^2+2s^2+8s \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}s^3+6s^2+8s\end{aligned} $$ | |
① | Multiply $ \color{blue}{s} $ by $ \left( s+2\right) $ $$ \color{blue}{s} \cdot \left( s+2\right) = s^2+2s $$ |
② | Multiply each term of $ \left( \color{blue}{s^2+2s}\right) $ by each term in $ \left( s+4\right) $. $$ \left( \color{blue}{s^2+2s}\right) \cdot \left( s+4\right) = s^3+4s^2+2s^2+8s $$ |
③ | Combine like terms: $$ s^3+ \color{blue}{4s^2} + \color{blue}{2s^2} +8s = s^3+ \color{blue}{6s^2} +8s $$ |