Tap the blue circles to see an explanation.
$$ \begin{aligned}9+4(x+2)-3x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}9+4x+8-3x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x+17-3x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}x+17\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( x+2\right) $ $$ \color{blue}{4} \cdot \left( x+2\right) = 4x+8 $$ |
② | Combine like terms: $$ \color{blue}{9} +4x+ \color{blue}{8} = 4x+ \color{blue}{17} $$ |
③ | Combine like terms: $$ \color{blue}{4x} +17 \color{blue}{-3x} = \color{blue}{x} +17 $$ |