Tap the blue circles to see an explanation.
$$ \begin{aligned}9(6x-2)-2(9x^2-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}54x-18-(18x^2-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}54x-18-18x^2+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-18x^2+54x-12\end{aligned} $$ | |
① | Multiply $ \color{blue}{9} $ by $ \left( 6x-2\right) $ $$ \color{blue}{9} \cdot \left( 6x-2\right) = 54x-18 $$Multiply $ \color{blue}{2} $ by $ \left( 9x^2-3\right) $ $$ \color{blue}{2} \cdot \left( 9x^2-3\right) = 18x^2-6 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 18x^2-6 \right) = -18x^2+6 $$ |
③ | Combine like terms: $$ 54x \color{blue}{-18} -18x^2+ \color{blue}{6} = -18x^2+54x \color{blue}{-12} $$ |