Tap the blue circles to see an explanation.
$$ \begin{aligned}9(3c-2)-5\cdot(2+c)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}27c-18-(10+5c) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}27c-18-10-5c \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}22c-28\end{aligned} $$ | |
① | Multiply $ \color{blue}{9} $ by $ \left( 3c-2\right) $ $$ \color{blue}{9} \cdot \left( 3c-2\right) = 27c-18 $$Multiply $ \color{blue}{5} $ by $ \left( 2+c\right) $ $$ \color{blue}{5} \cdot \left( 2+c\right) = 10+5c $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 10+5c \right) = -10-5c $$ |
③ | Combine like terms: $$ \color{blue}{27c} \color{red}{-18} \color{red}{-10} \color{blue}{-5c} = \color{blue}{22c} \color{red}{-28} $$ |