Tap the blue circles to see an explanation.
$$ \begin{aligned}8x-2(1-x+3x^2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x-(2-2x+6x^2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x-2+2x-6x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-6x^2+10x-2\end{aligned} $$ | |
① | Multiply $ \color{blue}{2} $ by $ \left( 1-x+3x^2\right) $ $$ \color{blue}{2} \cdot \left( 1-x+3x^2\right) = 2-2x+6x^2 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2-2x+6x^2 \right) = -2+2x-6x^2 $$ |
③ | Combine like terms: $$ \color{blue}{8x} -2+ \color{blue}{2x} -6x^2 = -6x^2+ \color{blue}{10x} -2 $$ |