Tap the blue circles to see an explanation.
$$ \begin{aligned}8x^3y^2-7xy^2+\frac{1}{7}xy^4& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8x^3y^2-7xy^2+\frac{x}{7}y^4 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}8x^3y^2-7xy^2+\frac{xy^4}{7} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{56x^3y^2+xy^4-49xy^2}{7}\end{aligned} $$ | |
① | Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{7} \cdot x & \xlongequal{\text{Step 1}} \frac{1}{7} \cdot \frac{x}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot x }{ 7 \cdot 1 } \xlongequal{\text{Step 3}} \frac{ x }{ 7 } \end{aligned} $$ |
② | Step 1: Write $ y^4 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{x}{7} \cdot y^4 & \xlongequal{\text{Step 1}} \frac{x}{7} \cdot \frac{y^4}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ x \cdot y^4 }{ 7 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ xy^4 }{ 7 } \end{aligned} $$ |
③ | Step 1: Write $ 8x^3y^2-7xy^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |