Tap the blue circles to see an explanation.
$$ \begin{aligned}8r\frac{h^2}{(2r+h)^3}-16r\frac{h^2}{(2r+h)^3\cdot(1-(2\frac{r}{2r+h})^2)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8r\frac{h^2}{8r^3+12hr^2+6h^2r+h^3}-16r\frac{h^2}{(2r+h)^3\cdot(1-(2\frac{r}{2r+h})^2)} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8h^2r}{h^3+6h^2r+12hr^2+8r^3}-16r\frac{h^2}{(2r+h)^3\cdot(1-(2\frac{r}{2r+h})^2)}\end{aligned} $$ | |
① | Find $ \left(2r+h\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = 2r $ and $ B = h $. $$ \left(2r+h\right)^3 = \left( 2r \right)^3+3 \cdot \left( 2r \right)^2 \cdot h + 3 \cdot 2r \cdot h^2+h^3 = 8r^3+12hr^2+6h^2r+h^3 $$ |
② | Step 1: Write $ 8r $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 8r \cdot \frac{h^2}{8r^3+12hr^2+6h^2r+h^3} & \xlongequal{\text{Step 1}} \frac{8r}{\color{red}{1}} \cdot \frac{h^2}{8r^3+12hr^2+6h^2r+h^3} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 8r \cdot h^2 }{ 1 \cdot \left( 8r^3+12hr^2+6h^2r+h^3 \right) } \xlongequal{\text{Step 3}} \frac{ 8h^2r }{ 8r^3+12hr^2+6h^2r+h^3 } = \\[1ex] &= \frac{8h^2r}{h^3+6h^2r+12hr^2+8r^3} \end{aligned} $$ |