Tap the blue circles to see an explanation.
$$ \begin{aligned}7x(7x+3y)(3x+9y)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(49x^2+21xy)(3x+9y) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}147x^3+441x^2y+63x^2y+189xy^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}147x^3+504x^2y+189xy^2\end{aligned} $$ | |
① | Multiply $ \color{blue}{7x} $ by $ \left( 7x+3y\right) $ $$ \color{blue}{7x} \cdot \left( 7x+3y\right) = 49x^2+21xy $$ |
② | Multiply each term of $ \left( \color{blue}{49x^2+21xy}\right) $ by each term in $ \left( 3x+9y\right) $. $$ \left( \color{blue}{49x^2+21xy}\right) \cdot \left( 3x+9y\right) = 147x^3+441x^2y+63x^2y+189xy^2 $$ |
③ | Combine like terms: $$ 147x^3+ \color{blue}{441x^2y} + \color{blue}{63x^2y} +189xy^2 = 147x^3+ \color{blue}{504x^2y} +189xy^2 $$ |