$$ \begin{aligned}72x^{13}y^9\frac{z^{16}}{3x^9y^4z^5}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{72x^{13}y^9z^{16}}{3x^9y^4z^5}\end{aligned} $$ | |
① | Step 1: Write $ 72x^{13}y^9 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 72x^{13}y^9 \cdot \frac{z^{16}}{3x^9y^4z^5} & \xlongequal{\text{Step 1}} \frac{72x^{13}y^9}{\color{red}{1}} \cdot \frac{z^{16}}{3x^9y^4z^5} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 72x^{13}y^9 \cdot z^{16} }{ 1 \cdot 3x^9y^4z^5 } \xlongequal{\text{Step 3}} \frac{ 72x^{13}y^9z^{16} }{ 3x^9y^4z^5 } \end{aligned} $$ |