Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{7}{x+2}+3\frac{x}{(x+2)^2}-\frac{5}{x}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{7}{x+2}+3\frac{x}{x^2+4x+4}-\frac{5}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{7}{x+2}+\frac{3x}{x^2+4x+4}-\frac{5}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{10x+14}{x^2+4x+4}-\frac{5}{x} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{5x^2-6x-20}{x^3+4x^2+4x}\end{aligned} $$ | |
① | Find $ \left(x+2\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ x } $ and $ B = \color{red}{ 2 }$. $$ \begin{aligned}\left(x+2\right)^2 = \color{blue}{x^2} +2 \cdot x \cdot 2 + \color{red}{2^2} = x^2+4x+4\end{aligned} $$ |
② | Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{x}{x^2+4x+4} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{x}{x^2+4x+4} \xlongequal{\text{Step 2}} \frac{ 3 \cdot x }{ 1 \cdot \left( x^2+4x+4 \right) } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3x }{ x^2+4x+4 } \end{aligned} $$ |
③ | To add raitonal expressions, both fractions must have the same denominator. |
④ | To subtract raitonal expressions, both fractions must have the same denominator. |