Tap the blue circles to see an explanation.
$$ \begin{aligned}6x(2x^2-5x+12)+9x^2(4x-7)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}12x^3-30x^2+72x+36x^3-63x^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}48x^3-93x^2+72x\end{aligned} $$ | |
① | Multiply $ \color{blue}{6x} $ by $ \left( 2x^2-5x+12\right) $ $$ \color{blue}{6x} \cdot \left( 2x^2-5x+12\right) = 12x^3-30x^2+72x $$Multiply $ \color{blue}{9x^2} $ by $ \left( 4x-7\right) $ $$ \color{blue}{9x^2} \cdot \left( 4x-7\right) = 36x^3-63x^2 $$ |
② | Combine like terms: $$ \color{blue}{12x^3} \color{red}{-30x^2} +72x+ \color{blue}{36x^3} \color{red}{-63x^2} = \color{blue}{48x^3} \color{red}{-93x^2} +72x $$ |