Tap the blue circles to see an explanation.
$$ \begin{aligned}6(2x-1)^2+34(2x-1)+20& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}6(4x^2-4x+1)+34(2x-1)+20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}24x^2-24x+6+68x-34+20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}24x^2+44x-28+20 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}24x^2+44x-8\end{aligned} $$ | |
① | Find $ \left(2x-1\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 2x } $ and $ B = \color{red}{ 1 }$. $$ \begin{aligned}\left(2x-1\right)^2 = \color{blue}{\left( 2x \right)^2} -2 \cdot 2x \cdot 1 + \color{red}{1^2} = 4x^2-4x+1\end{aligned} $$ |
② | Multiply $ \color{blue}{6} $ by $ \left( 4x^2-4x+1\right) $ $$ \color{blue}{6} \cdot \left( 4x^2-4x+1\right) = 24x^2-24x+6 $$Multiply $ \color{blue}{34} $ by $ \left( 2x-1\right) $ $$ \color{blue}{34} \cdot \left( 2x-1\right) = 68x-34 $$ |
③ | Combine like terms: $$ 24x^2 \color{blue}{-24x} + \color{red}{6} + \color{blue}{68x} \color{red}{-34} = 24x^2+ \color{blue}{44x} \color{red}{-28} $$ |
④ | Combine like terms: $$ 24x^2+44x \color{blue}{-28} + \color{blue}{20} = 24x^2+44x \color{blue}{-8} $$ |