Tap the blue circles to see an explanation.
$$ \begin{aligned}5x^2y^2z(3y+5x+7z)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}15x^2y^3z+25x^3y^2z+35x^2y^2z^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}25x^3y^2z+15x^2y^3z+35x^2y^2z^2\end{aligned} $$ | |
① | Multiply $ \color{blue}{5x^2y^2z} $ by $ \left( 3y+5x+7z\right) $ $$ \color{blue}{5x^2y^2z} \cdot \left( 3y+5x+7z\right) = 15x^2y^3z+25x^3y^2z+35x^2y^2z^2 $$ |
② | Combine like terms: $$ 25x^3y^2z+15x^2y^3z+35x^2y^2z^2 = 25x^3y^2z+15x^2y^3z+35x^2y^2z^2 $$ |