Tap the blue circles to see an explanation.
$$ \begin{aligned}5x^{11}+10x^{10}-35 \cdot \frac{x^9}{5}x^9& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5x^{11}+10x^{10}-\frac{35x^9}{5}x^9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5x^{11}+10x^{10}-\frac{35x^{18}}{5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-35x^{18}+25x^{11}+50x^{10}}{5}\end{aligned} $$ | |
① | Step 1: Write $ 35 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 35 \cdot \frac{x^9}{5} & \xlongequal{\text{Step 1}} \frac{35}{\color{red}{1}} \cdot \frac{x^9}{5} \xlongequal{\text{Step 2}} \frac{ 35 \cdot x^9 }{ 1 \cdot 5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 35x^9 }{ 5 } \end{aligned} $$ |
② | Step 1: Write $ x^9 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{35x^9}{5} \cdot x^9 & \xlongequal{\text{Step 1}} \frac{35x^9}{5} \cdot \frac{x^9}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 35x^9 \cdot x^9 }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 35x^{18} }{ 5 } \end{aligned} $$ |
③ | Step 1: Write $ 5x^{11}+10x^{10} $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |