Tap the blue circles to see an explanation.
$$ \begin{aligned}5x(3x-3)-x(x+4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}15x^2-15x-(x^2+4x) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}15x^2-15x-x^2-4x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}14x^2-19x\end{aligned} $$ | |
① | Multiply $ \color{blue}{5x} $ by $ \left( 3x-3\right) $ $$ \color{blue}{5x} \cdot \left( 3x-3\right) = 15x^2-15x $$Multiply $ \color{blue}{x} $ by $ \left( x+4\right) $ $$ \color{blue}{x} \cdot \left( x+4\right) = x^2+4x $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( x^2+4x \right) = -x^2-4x $$ |
③ | Combine like terms: $$ \color{blue}{15x^2} \color{red}{-15x} \color{blue}{-x^2} \color{red}{-4x} = \color{blue}{14x^2} \color{red}{-19x} $$ |