Tap the blue circles to see an explanation.
$$ \begin{aligned}5-4(x-2)+8x& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5-(4x-8)+8x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}5-4x+8+8x \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x+13\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( x-2\right) $ $$ \color{blue}{4} \cdot \left( x-2\right) = 4x-8 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 4x-8 \right) = -4x+8 $$ |
③ | Combine like terms: $$ \color{blue}{5} \color{red}{-4x} + \color{blue}{8} + \color{red}{8x} = \color{red}{4x} + \color{blue}{13} $$ |