$$ \begin{aligned}5(2x^4y^7)^3(x^3y^5)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}58x^{12}y^{21}1x^6y^{10} \xlongequal{ } \\[1 em] & \xlongequal{ }40x^{12}y^{21}1x^6y^{10} \xlongequal{ } \\[1 em] & \xlongequal{ }40x^{18}y^{31}\end{aligned} $$ | |
① | $$ \left( 2x^4y^7 \right)^3 = 2^3 \left( x^4 \right)^3 \left( y^7 \right)^3 = 8x^{12}y^{21} $$$$ \left( x^3y^5 \right)^2 = 1^2 \left( x^3 \right)^2 \left( y^5 \right)^2 = x^6y^{10} $$ |