Tap the blue circles to see an explanation.
$$ \begin{aligned}5\cdot(2+5x)-4(2z-3)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}10+25x-(8z-12) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}10+25x-8z+12 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}25x-8z+22\end{aligned} $$ | |
① | Multiply $ \color{blue}{5} $ by $ \left( 2+5x\right) $ $$ \color{blue}{5} \cdot \left( 2+5x\right) = 10+25x $$Multiply $ \color{blue}{4} $ by $ \left( 2z-3\right) $ $$ \color{blue}{4} \cdot \left( 2z-3\right) = 8z-12 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 8z-12 \right) = -8z+12 $$ |
③ | Combine like terms: $$ \color{blue}{10} +25x-8z+ \color{blue}{12} = 25x-8z+ \color{blue}{22} $$ |