Tap the blue circles to see an explanation.
$$ \begin{aligned}4x+8x^3-4-3(x^3-2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x+8x^3-4-(3x^3-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x+8x^3-4-3x^3+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}5x^3+4x+2\end{aligned} $$ | |
① | Multiply $ \color{blue}{3} $ by $ \left( x^3-2\right) $ $$ \color{blue}{3} \cdot \left( x^3-2\right) = 3x^3-6 $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 3x^3-6 \right) = -3x^3+6 $$ |
③ | Combine like terms: $$ 4x+ \color{blue}{8x^3} \color{red}{-4} \color{blue}{-3x^3} + \color{red}{6} = \color{blue}{5x^3} +4x+ \color{red}{2} $$ |