Tap the blue circles to see an explanation.
$$ \begin{aligned}4x+3-5\cdot(4-8x)+7x-2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x+3-(20-40x)+7x-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x+3-20+40x+7x-2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}51x-19\end{aligned} $$ | |
① | Multiply $ \color{blue}{5} $ by $ \left( 4-8x\right) $ $$ \color{blue}{5} \cdot \left( 4-8x\right) = 20-40x $$ |
② | Remove the parentheses by changing the sign of each term within them. $$ - \left( 20-40x \right) = -20+40x $$ |
③ | Combine like terms: $$ \color{blue}{4x} + \color{red}{3} \color{green}{-20} + \color{orange}{40x} + \color{orange}{7x} \color{green}{-2} = \color{orange}{51x} \color{green}{-19} $$ |