Tap the blue circles to see an explanation.
$$ \begin{aligned}4 \cdot \frac{x}{3}x^2+4x+8& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4x}{3}x^2+4x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4x^3}{3}+4x+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4x^3+12x}{3}+8 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{4x^3+12x+24}{3}\end{aligned} $$ | |
① | Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{x}{3} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{x}{3} \xlongequal{\text{Step 2}} \frac{ 4 \cdot x }{ 1 \cdot 3 } \xlongequal{\text{Step 3}} \frac{ 4x }{ 3 } \end{aligned} $$ |
② | Step 1: Write $ x^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4x}{3} \cdot x^2 & \xlongequal{\text{Step 1}} \frac{4x}{3} \cdot \frac{x^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4x \cdot x^2 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4x^3 }{ 3 } \end{aligned} $$ |
③ | Step 1: Write $ 4x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
④ | Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |