Tap the blue circles to see an explanation.
$$ \begin{aligned}4 \cdot \frac{h^5}{18}h^2u^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4h^5}{18}h^2u^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4h^7}{18}u^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4h^7u^3}{18}\end{aligned} $$ | |
① | Step 1: Write $ 4 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 4 \cdot \frac{h^5}{18} & \xlongequal{\text{Step 1}} \frac{4}{\color{red}{1}} \cdot \frac{h^5}{18} \xlongequal{\text{Step 2}} \frac{ 4 \cdot h^5 }{ 1 \cdot 18 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4h^5 }{ 18 } \end{aligned} $$ |
② | Step 1: Write $ h^2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4h^5}{18} \cdot h^2 & \xlongequal{\text{Step 1}} \frac{4h^5}{18} \cdot \frac{h^2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4h^5 \cdot h^2 }{ 18 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4h^7 }{ 18 } \end{aligned} $$ |
③ | Step 1: Write $ u^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{4h^7}{18} \cdot u^3 & \xlongequal{\text{Step 1}} \frac{4h^7}{18} \cdot \frac{u^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 4h^7 \cdot u^3 }{ 18 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 4h^7u^3 }{ 18 } \end{aligned} $$ |