Tap the blue circles to see an explanation.
$$ \begin{aligned}48 \cdot \frac{m^3}{3}m^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{48m^3}{3}m^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{48m^6}{3}\end{aligned} $$ | |
① | Step 1: Write $ 48 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 48 \cdot \frac{m^3}{3} & \xlongequal{\text{Step 1}} \frac{48}{\color{red}{1}} \cdot \frac{m^3}{3} \xlongequal{\text{Step 2}} \frac{ 48 \cdot m^3 }{ 1 \cdot 3 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 48m^3 }{ 3 } \end{aligned} $$ |
② | Step 1: Write $ m^3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{48m^3}{3} \cdot m^3 & \xlongequal{\text{Step 1}} \frac{48m^3}{3} \cdot \frac{m^3}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 48m^3 \cdot m^3 }{ 3 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 48m^6 }{ 3 } \end{aligned} $$ |