Tap the blue circles to see an explanation.
$$ \begin{aligned}44r^2+7r+\frac{1}{11}r-1& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}44r^2+7r+\frac{r}{11}-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{484r^2+78r}{11}-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{484r^2+78r-11}{11}\end{aligned} $$ | |
① | Step 1: Write $ r $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{11} \cdot r & \xlongequal{\text{Step 1}} \frac{1}{11} \cdot \frac{r}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ 1 \cdot r }{ 11 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ r }{ 11 } \end{aligned} $$ |
② | Step 1: Write $ 44r^2+7r $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
③ | Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |