Tap the blue circles to see an explanation.
$$ \begin{aligned}4(x+3)(x-6)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(4x+12)(x-6) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2-24x+12x-72 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}4x^2-12x-72\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( x+3\right) $ $$ \color{blue}{4} \cdot \left( x+3\right) = 4x+12 $$ |
② | Multiply each term of $ \left( \color{blue}{4x+12}\right) $ by each term in $ \left( x-6\right) $. $$ \left( \color{blue}{4x+12}\right) \cdot \left( x-6\right) = 4x^2-24x+12x-72 $$ |
③ | Combine like terms: $$ 4x^2 \color{blue}{-24x} + \color{blue}{12x} -72 = 4x^2 \color{blue}{-12x} -72 $$ |