Tap the blue circles to see an explanation.
$$ \begin{aligned}4(x^2+x-6)+9& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}4x^2+4x-24+9 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}4x^2+4x-15\end{aligned} $$ | |
① | Multiply $ \color{blue}{4} $ by $ \left( x^2+x-6\right) $ $$ \color{blue}{4} \cdot \left( x^2+x-6\right) = 4x^2+4x-24 $$ |
② | Combine like terms: $$ 4x^2+4x \color{blue}{-24} + \color{blue}{9} = 4x^2+4x \color{blue}{-15} $$ |